Persamaan x2 - (3a)x + 18 = 0 memiliki akar-akar p dan q. Jika p - 2pq + q = 31a. Tentukan nilai a
Persamaan x² - (3a)x + 18 = 0 memiliki akar-akar p dan q. Jika p - 2pq + q = 31a. Tentukan nilai a!
Jawab:
x² – (3a)x + 18 = 0
p + q = -b/a = 3a
p . q = c/a = 18
Sehingga:
p – 2pq + q = 31a
⇔ (p + q) – 2 (p . q) = 31a
⇔ 3a – 2 . 18 = 31a
⇔ 3a – 31a = 36
⇔ -28a = 36
⇔ a = 36/-28 = -9/7
Jadi nilai a adalah -9/7
++++++++++++++++++++++++++
Semoga Bermanfaat dan Berkah
Jangan Lupa Belajar Terus
Ingat Cita-Cita, Orang Tua, dan Keluarga
Posting Komentar untuk "Persamaan x2 - (3a)x + 18 = 0 memiliki akar-akar p dan q. Jika p - 2pq + q = 31a. Tentukan nilai a"