Persamaan x2 - (3a)x + 18 = 0 memiliki akar-akar p dan q. Jika p - 2pq + q = 31a. Tentukan nilai a

Persamaan x² - (3a)x + 18 = 0 memiliki akar-akar p dan q. Jika p - 2pq + q = 31a. Tentukan nilai a!

Jawab:

x² – (3a)x + 18 = 0

p + q = -b/a = 3a

p . q = c/a = 18

Sehingga:

p – 2pq + q = 31a

⇔ (p + q) – 2 (p . q)  = 31a

⇔ 3a – 2 . 18 = 31a

⇔ 3a – 31a = 36

⇔ -28a = 36

⇔ a = 36/-28 = -9/7

Jadi nilai a adalah -9/7

 ++++++++++++++++++++++++++

Semoga Bermanfaat dan Berkah

Jangan Lupa Belajar Terus

Ingat Cita-Cita, Orang Tua, dan Keluarga

Posting Komentar untuk "Persamaan x2 - (3a)x + 18 = 0 memiliki akar-akar p dan q. Jika p - 2pq + q = 31a. Tentukan nilai a"